Efficient Generation of Statistically Good Pseudonoise
by Linearly Interconnected Shift Registers

W. J. Hurd

Communications Systems Research Section

Some new algorithms are presented for generating pseudorandom noise utiliz-
ing binary maximal length linear recursive sequences of high degree and with
many nonzero terms. The ability to efficiently implement high degree recursions
is important because the number of consecutive bits which can be guaranteed to
be both linearly and statistically independent is equal to the degree of the
recursion. The implementations are by interconnection of several short shift reg-
isters in a linear manner in such a way that different widely spaced phase shifts
of the same pseudonoise sequence appear in the stages of the several registers.
This is efficient both in hardware and in software. Several specific algorithms are
subjected to extensive statistical evaluation, with no evidence found to dis-
tinguish the sequences from purely random binary sequences.

l. Introduction

Digitally generated pseudorandom noise and analog-
generated random noise are extensively used in various
research, development, simulation, testing and system
evaluation and calibration activities. Digital pseudonoise
has basic advantages over analog-generated noise, in its
repeatability and inherent stability. Therefore, analog
noise signals are frequently generated by converting
digital noise to analog, and digital computer applications
rarely use analog-generated noise.

This paper presents some eflicient new algorithms for
generating digital pseudonoise. The algorithms are effi-
cient because a large number of new pseudorandom bits
are generated at each iteration of a computer imple-
mentation, or at each clock pulse of a hardware imple-
mentation. The pseudonoise has good statistical

92

properties because the several simultaneously generated
bits are the corresponding bits from different phase shifts
of the same maximal length linear recursive sequence.
These sequences, also called maximal length shift register
sequences, pn-sequences, and m-sequences, are well
known to have good randomness properties (Refs. 1 and 2).

Some of the key features of the new algorithms are:

(1) The algorithms are eflicient in both hardware and
software implementations. Besides being indepen-
dently useful in the two applications, this has the
advantage that specific proposed hardware imple-
mentations can be efficiently simulated and evalu-
ated before hardware is constructed.

(2) In software applications, the new algorithms are
more efficient than existing algorithms for pn-

JPL TECHNICAL REPORT 32-1526, VOL. XI

sequences with comparable randomness properties.
Some efficient algorithms are known for particularly
simple recursions, but the resulting sequences have
poor statistical properties which the new algorithms
avoid.

(3) Widceband pseudo-gaussian analog signals can be
casily generated from hardware implementations.
This is accomplished by the analog summation of
voltage waveforms corresponding to the several
new bits generated at each clock pulse. A noise
generator has been constructed utilizing this prin-
ciple, in similar manner to an earlier digital

gaussian noise generator described elsewhere
(Ref. 3).

(4) The statistical properties of the sequences have
been evaluated extensively, with no evidence found
to distinguish the sequences from purely random
sequences of independent, equally likely, binary
numbers.

This paper is divided into three main sections. First,
some of the properties of pn-sequences are reviewed, and
standard implementations are discussed. This serves as
a motivation for the development of the new algorithms.
Second, the new algorithms are described in general,
and specific implementations are discussed. Finally, the
results of extensive statistical evaluation of the pseudo-
noise are presented, and the sequences are shown to have
favorable randomness characteristics.

Il. Motivation for Use of pn-Sequences

A binary linear recursive sequence is a sequence {X;}
of zeroes and ones satisfying a linear recursion of the form

Xy = i a; DX, (1

i=1

where D is the delay operator, i.e., DXy = Xy_;, the a,
are zero or one, and addition is modulo-2. The degree of
the recursion is the largest value of i for which a; =1,
and the maximum possible period of a sequence from
a linear recursion of degree n is 2* — 1. These maximal
length linear recursive sequences, called pn-sequences,
occur when the polynomial

P(D)=1+3 wD

i=1

is primitive over GF(2).

JPL TECHNICAL REPORT 32-1526, VOL. XI

A. Randomness Properties

PN-sequences are known to have many favorable ran-
domness properties (Refs. 1 and 2). Some important prop-
erties common to all pn-sequences are:

(1) For degree n, all of the 2" — 1 possible nonzero
n-tuples, or sets of n consecutive bits, occur equally
often. This means that binary numbers formed
from disjoint subsets of the same n-tuple are in-
dependent and jointly uniformly distributed.

(2) All phase shifts are essentially uncorrelated, when
correlation is defined as the number of places in
which the phase shifts agree, less the number in
which they disagree.

(3) Under suitable conditions, sets of n-tuples from
different phase shifts of a sequence are uncorre-
lated, when considered as binary numbers (Ref. 2).

These properties indicate not only that pn-sequences
are good sources of random numbers, but that it may be
possible to utilize different phase shifts of the same se-
quence as essentially independent noise sequences.

The properties we have discussed so far apply equally
to all pn-sequences, but other properties cause some
sequences to appear more random than others. In par-
ticular, consider m-tuples for m greater than the degree
n. Since some of the bits of the m-tuples are linearly
related, they are not statistically independent. Fortu-
nately the statistical dependence is usually not observed
unless the recursion is a particularly simple one. Lind-
holm (Ref. 4), however, has investigated the weights of
m-tuples, i.e., the number of ones. In a purely random
sequence, the weights would be binomially distributed
symmetrically about m/2, but there is significant devia-
tion from this when the recursion is a trinomial or
divides some trinomials of low degree.

The above properties of pn-sequences indicate that
the randomness properties tend to improve with the de-
gree and complexity of the recursion. They also indicate
that bits from several phase shifts of the same sequence
might be as useful as the same total number of bits from
one phase shift. As we shall see, this has implementation
advantages.

B. Well-Known Implementation

PN-sequences are easily generated one bit at a time
in binary shift registers, as shown in Fig. 1. The input
to the first stage is labeled Xy, and the outputs of the

93

n-stages are X;_1, Xi-s, - - o Xg-n, the values of X; at the n
previous instants of time. As the time index advances
from k to k + 1, the state of each stage of the register
assumes the value of its input. The register shown sat-
isfies the trinomial recursion
Xy = X1 + Xpon (mod 2) (2)

so that its characteristic polynomial in the delay oper-
ator is

P(D)=1+D+D" (mod?2) (3)
The resulting sequence {X;} is a pn-sequence if P(D) is
primitive.

One can generate several phase shifts of the same
sequence by several straightforward methods, using the
cycle-and-add property. This property is that the mod-2
sum of any two phase shifts is another phase shift. Thus
one method is to sum the outputs of any two stages to
yield a new phase shift. Another method can be used
if the input X; depends on several, say N, of the previous
n states. Then Xj, is implemented in a series of N — 1
two-input modulo-2 adders, and the output of each adder
is a different phase shift. Both of these methods suffer
the implementation deficiencies that the complexity in-
creases with the number of terms in the recursion and
the number of phase shifts generated, and that they are
not amenable to software systems. They have the sta-
tistical deficiency that the various phase shifts are simply
related, and therefore cannot be considered statistically
independent, even though they must be uncorrelated.

In software, it is fairly easy to generate n successive
bits of a degree n recursion in a few machine instruc-
tions, provided that the recursion is a trinomial, as was
done by Kendall (Ref. 5) for n = 47. Unfortunately, the
algorithm complexity increases with the number of terms
in the recursion, and trinomial recursions result in sta-
tistical dependencies which sometimes lead to erroneous
simulation results, as observed by Heller (Ref. 6). Fur-
thermore, the method is efficient only when # is less than
the number of bits in one or two computer words, be-
cause of the shifting operations which are required.

In summary, the considerations above indicate that
there is a need both in hardware and software for
algorithms for efliciently generating long period pn-
sequences with complex recursions. The efficiency is to
be gained by generating several new bits simultaneously,

94

either consecutive bits from a sequence, or bits from
several different phase shifts of a sequence. It is the latter
approach which we develop here.

1. Sequence Generation by Interconnection
of Shift Registers

The algorithms presented here utilize the linear inter-
connection of several shift registers to simultaneously
generate several phase shifts of the same pn-sequence.
For a degree n recursion, the n bits in memory at any
one time are not consecutive bits from one pn-sequence,
but are bits from several phase shifts. Nevertheless, they
are linearly independent, and they retain the important
statistical property that all disjoint subsets, considered
as binary numbers, are independent and jointly uni-
formly distributed. This follows because all of the 2" — 1
possible nonzero states of the n bits occur equally often.

The algorithms are cfficient both for hardware and
software. The theorctical minimum of n stages of shift
register and still fewer gates are required in hardware
for a polynomial of degree n, and onc new word is gen-
erated at each clock pulse. In software, approximately
12 machine instructions are required to generate one new
word of pseudorandom bits, even though the degree of
the polynomial may be much higher than the word
length. Since the degree determines the number of con-
secutive bits which are guaranteed to be statistically
independent, a number of successive independent com-
puter words can be generated without sacrificing effi-
ciency.

Figure 2 shows a simple linear interconnection of
three shift registers. The registers are labeled 0, 1, and
2, with inputs at time k of X{, X{, and X{. At time k,
the first (leftmost) stages of the registers store the input
values at time k — 1, ie., X{® , X and X{,. The shift-
ing is from left to right, so, in general, stage j of register i
stores the value X{), at time k.

In the particular example of Fig. 2, register 0 has three
stages, and registers 1 and 2 have four stages. The input
to each register is the modulo-2 sum of the output of
the last stage of the same register, and the output of one
stage from the previous register. Thus we can define
the recursion by

X =XO, X0 i=012(mod3) (4)

JPL TECHNICAL REPORT 32-1526, VOL. XI

where g, is the number of stages in register i, and d; ,
is the stage of register i —1 which forms an input to
register i. We can also write
X® = DuX® + D%-XG-0, =012 (mod3) (5)
and this set of equations is easily solved in general for
the characteristic polynomial in the delay operator as

N-1 Nildi
PD)y=T1 (1 + D4i) + D i=0 (6)

=0

where we have now generalized to N registers, labeled
012,..,N—1

For the particular case of Fig. 2,
P(D) = 1 + D* + D® + Ds + Du (7)

which is a primitive polynomial, as can be verified by
calculation or from tables (Ref. 7). Thus the sequence
of states of the stages of each register is the pn-sequence
defined by P(D), or by the recursion

Xy = Xyos + Xpos + Xpos + Xena (8)

C. Final Configuration

To achieve simple implementations, it is necessary to
restrict the register interconnections to some regular
form. However, forms which have each input depend on
only two register stages, as in Fig. 2, are probably not
satisfactory, because they tend to suffer some of the sta-
tistical deficiencies of trinomial recursions, even though
trinomial characteristic polynomials do not typically
result.

The next alternative could be to have each input de-
pend on three register stages. Most configurations in
which each input depends on at least three register
stages would probably be satisfactory statistically. How-
ever, for implementation considerations, we have chosen,
instead, to have the first stage of each register depend
on only two inputs and to modify the connections to the
last stage of each register so that its input is the sum
of its own output state and the state of the preceding
stage. This operation is known as toggling, because the
stage toggles, i.e., changes state, whenever its input is 1.
This is the natural operation of a T flip-flop, or a J-K

JPL TECHNICAL REPORT 32-1526, VOL. XI

flip-flop with the two inputs the same. In delay operator
notation, this stage performs the operation

D
1+D

instead of the operation D.

The final configuration consists in general of N reg-
isters of the form shown in Fig. 3. Register i has g,
stages, the first q; — 1 of which shift, and the last stage
of which toggles. Thus the stage outputs of register i
at times k are

q

1+

i

5 X(

DX{, DX, ..., D%-1X() and

The input X{? to register ¢ is the modulo-2 sum of the
last stage of register i —1 (mod N) and stage d;_, of
register i — 2 (mod N). Thus the system is defined by the
equations

X0 inqX(‘ D 4 Dii—a X(i-9

R A fi-z X
1+ D (9)
i=01..,N—1 (modN)

D. Specific Realizations

In order to find specific systems corresponding to
primitive polynomials, it is necessary to calculate the
polynomials for various values of the system parameters
and to test for primitivity. This is best done with a com-
puter, and programs have been written for this purpose.
To test for primitivity, one computes D" (mod P(D)) for
all integers r which divide 2" — 1. The polynomial P(D)
is primitive if r = 2" — 1 is the smallest value of r such
that D=1 (mod P(D)). This test cannot be performed
for all degrees n, because the factors of 2* — 1 are not
known in general. Furthermore, the average number of
computations required to find a primitive polynomial
increases as n*. The highest degree for which a primitive
polynomial system of the special form was found is 310.

Table 1 summarizes some of the realizations found
which have primitive characteristic polynomials. This
table is restricted to equal length shift registers of length
q, with degree n = Ng. The d; are also restricted. They
are allowed to assume only two values, d; =d, for
i=01,...N,—1, and d; =dy_, for i =N,N, +1,...,
N — L In other words, the first N, of the d; are equal
to d,, and the rest are equal to dy_;. Column T in Table 1
gives the number of nonzero coefficients in the resulting
polynomial, i.e., it is a T-nomial.

95

Many more primitive configurations can be found by
lifting the restrictions on the q; and d;.

E. Software Implementation

For computer implementation, realizations using equal
length registers are most useful, especially when the
number of registers is equal to the computer word length.
If all registers are of length ¢, then a g word array of
memory is used, as shown in Fig. 4. The last word of
the array stores the first bit of each of the N shift reg-
isters, the next to last word stores the second bit of each
register, etc. Thus word g — j + 1 stores

DiX®, DIX{, ..., DiX{-»

forj=12,...,q — 1, and word 1 stores

D1 Do Du
(0) X (¥-1)
D% TFD " TT Dk

We can envision shifting words upwards through the
array, with toggling of the first word.

The computer program must accomplish three things,
in principle simultaneously. First, it must selectively
merge the various words to form a word

DAX©, DX, .., D1 X@ -0

and modulo-2 add the proper shift of this word to the
proper shift of word 1 to form the new word q. Second,
it must form the new word 1 by modulo-2 adding words
1 and 2. Third, it must shift the old words ¢, —1,...,3
intogq — 1, —2,...,2. In practice, it is more efficient to
generate a new array of ¢ words at one time, i.e.,, the N
registers are each shifted g places, yielding n new pseudo-
random bits.

Several specific algorithms have been programmed for
the XDS Sigma 5 computer. The statistical properties of
these sequences are evaluated in Section 1V, and a
FORTRAN program for degree 288 with N =32, ¢ =9
is described in the Appendix. In this particular program,
the registers have been permuted so that the input to
register i depends on registers ¢ — 5 and i — 10, instead
of on registers i — 1 and ¢ — 2. The program execution
time is 37 ps per 32-bit number.

F. Hardware Applications

The realizations for small n and N are useful in hard-
ware applications. A pseudo-gaussian noise generator
has been constructed for N = 12, n = 60 using only 20

96

integrated circuits. For this implementation, the d; for
i=01,..., N—1are 3214248321441, and the poly-
nomial has 25 nonzero coefficients. To transform from a
binary to a pseudo-gaussian sequence, voltage wave-
forms corresponding to the 12 new bits generated at
each clock pulse are summed in a resistor network and
then filtered, in a similar manner to the noise generator
of Ref. 1. The advantage to the new method over the
earlier noise generator is that less hardware is required
so that the cost is substantially less. Furthermore, the
pseudonoise properties of this noise generator are very
good, as will be shown next.

IV. Evaluation of Statistical Properties

Extensive chi-squared tests were performed on the
sequences generated by computer programs for algorithms
of degrees 310, 288, 160, and 60. The program for degree
60 implemented the same system as the hardware noise
generator described above. The other three cases are the
polynomials with the largest numbers of nonzero coef-
ficients given in Table 1. These were evaluated to deter-
mine their suitability for use as standard computer noise
generator algorithms. The sequences were tested to see
whether computer words treated as binary numbers were
jointly uniformly distributed in several dimensions, and
the weight distributions of m-tuples were tested for being
binomial for various m. The results of these tests showed
no evidence to distinguish any of these pseudonoise
sequences from truly random binary sequences.

A. Tests for Jointly Uniform Distributions

The results of the tests for uniformity are summarized
in Table 2. To illustrate the use of this table, we explain
the entries in each column of the second row. The first
column identifies the case as corresponding to the degree
60 polynomial, or the one implemented in hardware.
The second and third columns indicate that this test was
for joint uniformity in three dimensions, with 999 degrees
of freedom. This means that the data were sorted into
1000 bins, and since all bins were of equal size, the bin
dimensions are 0.1 X 0.1 X 0.1 if the numbers are con-
sidered to be between 0 and 1. The next column indicates
that 25,000 data samples were used to compute each
value of % In this case, 25,000 sets of three numbers
were required. The last five columns indicate that 100
tests were run; the values of 2 which should be exceeded
99% and 95% of the time were exceeded in all but 0
and 10 tests, respectively; the values which should be
exceeded 1% and 5% of the time were exceeded 0 and
8 times, respectively.

JPL TECHNICAL REPORT 32-1526, VOL. XI

In order to search for any possible anomalies in the
joint distributions of nonadjacent words on the sequences,
the data samples used for the tests of Table 2 were not
all adjacent words in the sequences. For a k-dimensional
test, the first five sets of k words were adjacent on the
sequence, the k words of the next five sets were spaced
two words apart, the k words of the next five sets were
spaced three words apart, etc., until the spacing between
the words of last five sets of k-words was equal to the
number of tests divided by five.

For all cases, the number of observances of large and
small values of x* are very close to the expected values
of these events for independent and uniformly distributed
random numbers. In particular, for the 2965 tests per-
formed on the degree 288 polynomial, a total of 20 values
of x* were less than the 99% value, and 25 exceeded the
1% value. This is, in both cases, less than two standard
deviations from the mean value of 29.65, since the stan-
dard deviation is 5.42. Considering the extensiveness of
the tests performed, sequences whose statistics differed
significantly from the statistics tested for would almost
certainly result in many more large values of x* than
expected. Thus there is no evidence to distinguish the
sequences from purcly random sequences.

B. Test of Weight Distribution

For the same four algorithms, the distributions of the
weights of m-tuples of consecutive bits were tested for
being binomially distributed, as would be the case for a
purcly random sequence. This test was performed be-
cause pn-sequences generated by trinomials will fail this
test.

JPL TECHNICAL REPORT 32-1526, VOL. XI

Each m-tuple considered was made up of the bits of
an integer number of words, where word length cor-
responds to the number of shift registers in the corre-
sponding hardware implementation. Thus m is always a
multiple of 12 for the degree 60 case, 31 for the degree
310 case, and 32 for the other two cases.

Table 3 summarizes the results of these tests. The
columns in Table 3 are the same as in Table 2, except
that the second column indicates the lengths of the
m-tuples. Various m-tuple lengths up to more than 1200
were tested for each of the four algorithms. In all cases,
the number of times y* exceeded the 1% and 5% values
was approximately as expected. Also, the numbers of
values less than the 95% values were near the means.

The only unusual result was that only one value of ¥
was less than the 99% value. We attribute this to the fact
that the 99% threshold used was not the correct value for
the actual observables, because the observables are only
asymptotically chi-squared distributed. The deviation of
the actual distribution from chi-squared is significant for
small values. For example, a truly chi-squared variate
can take on the value zero, whereas our observables had
a minimum value greater than zero. This was because
the observation space was divided into bins with non-
integer expected numbers of occurrences. Since the num-
bers of observed values of yx* less than the 95% values
were close to the mean, we do not consider the sparsity
of extremely small values to be significant. The overall
conclusion drawn from the weight distribution tests is
that there is no evidence to distinguish the bit sequences

from truly random sequences of independent, equally
likely bits.

97

98

References

. Golomb, S. W., Shift Register Sequences. Holden Day, San Francisco, 1967.

. Tausworthe, R. C., “Random Numbers Generated by Linear Recurrence Modulo

Two,” Math. Comp., Vol. 19, No. 90, April 1963, pp. 201-209. Sece also Supporting
Research and Advanced Development, JPL. Space Programs Summary 37-27,
Vol. IV, pp. 185-189, Jet Propulsion Laboratory, Pasadena, Calif., June 30, 1964.

. Hurd, W. J., “A Wideband Gaussian Noise Generator Utilizing Simultaneously

Generated PN-Sequences,” in Proceedings of the Fifth Hawaii International
Conference on System Sciences, January 1972, pp. 168-170. See also The Deep
Space Network Progress Report, Technical Report 32-1526, Vol. 111, pp. 111-
115, Jet Propulsion Laboratory, Pasadena, Calif., June 15, 1971.

. Lindholm, J. H., “An Analysis of the Pseudo-Randomness Properties of Sub-

sequences of Long m-Sequences,” IEEE Trans. Info. Theory, Vol. 1T-14, No. 4,
July 1968, pp. 569-576.

. Kendall, W. B., “A Generator of Uncorrelated Pscudo Random Numbers for

Scientific Data Systems (SDS) Computers,” Supporting Research and Advanced
Development, JPL Space Programs Summary 37-34, Vol. IV, pp. 296-298, Jet
Propulsion Laboratory, Pasadena, Calif., Aug. 31, 1965.

. Heller, J. A,, “Improved Performance of Short Constraint Length Convolu-

tional Codes,” JPL Space Programs Summary 37-56, Vol. 11, p. 83, Jet Pro-
pulsion Laboratory, Pasadena, Calif., Apr. 30, 1969.

. Peterson, W. W., Error-Correcting Codes. MIT Press and John Wiley, New

York, 1961.

JPL TECHNICAL REPORT 32-1526, VOL. Xi

Table 1. Some primitive polynomial configurations

n N q T d, dy_y N,
20 5 7 1 2 1
20 5 7 1 3 1
20 5 11 1 4 1
60 10 6 29 2 3 3
60 15 4 31 2 1 2
80 16 5 25 4 3 7
155 31 5 79 2 3 2
160 32 5 29 2 1 3
160 32 5 57 2 1 5
288 32 9 81 6 7 13
310 31 10 95 5 8 2
310 31 10 119 5 6 3
310 31 10 93 3 8 4
310 31 10 117 6 9 4
310 31 10 97 2 7 5
310 31 10 97 5 2 5

Table 2. Chi-squared tests for uniformity

Values less than

Values exceeding

Polynomial Number of Degrees of Samples Number

degree dimensions freedom per test of tests xZ, X2, X2, X2,
60 1 1023 25,000 100 1 7 1 6

60 3 999 25,000 160 0 10 0 8
60 Totals 260 1 17 1 14
160 3 999 25,000 295 2 9 1 11
288 1 999 25,000 250 2 20 3 7
288 2 960 25,000 750 8 46 11 37
288 3 999 25,000 750 5 30 4 24
288 4 1295 25,000 750 4 37 5 30
288 5 1023 25,000 465 1 19 2 19
288 Totals 2965 20 152 25 117
310 3 999 25,000 280 2 20 2 10

JPL TECHNICAL REPORT 32-1526, VOL. Xi

99

Table 3. Chi-squared tests on weight distributions

Polynomial m-tuple Degrees of Samples Number Values less than Values exceeding

degree length freedom per test of tests X2, X2 X2, X%,
60 60 26 25,000 25 1 2 1 2
60 120 36 25,000 25 0 0 1 2
60 180 44 25,000 25 0 2 1 1
60 240 50 25,000 25 0 1 0 0
60 300 56 25,000 25 0 2 0 2
60 600 76 25,000 25 0 0 0 1
60 1200 106 25,000 25 0 0 1 2
60 1800 126 25,000 70 0 2 1 4
60 Totals 245 1 9 5 14
160 32 18 25,000 25 0 2 0 0
160 96 32 25,000 25 0 1 1 2
160 160 42 25,000 25 0 0 0 0
160 320 58 25,000 25 0 0 0 0
160 640 78 25,000 37 0 5 1 2
160 1280 108 25,000 25 0 1 2 3
160 Totals 162 0 9 4 7
288 32 18 25,000 25 0 1 0 0
288 96 32 25,000 25 0 0 1 1
288 160 42 25,000 25 0 1 0 4
288 320 58 25,000 25 0 1 0 1
288 640 78 25,000 25 0 0 0 1
288 640 88 100,000 25 0 2 0 2
288 1280 108 25,000 25 0 2 1 1
288 Totals 175 0 7 2 10
310 31 17 10,000 25 0 1 0 0
310 155 37 10,000 25 0 1 0 3
310 310 52 10,000 25 0 0 0 3
310 620 70 10,000 25 0 1 1 2
310 1240 96 10,000 10 0 0 0 0
310 1240 116 50,000 10 0 1 0 0
310 Totals 120 0 4 1 8

100 JPL TECHNICAL REPORT 32-1526, VOL. XI

K
X1 X2 X3 s 0= X,

+

(MOD 2)

_ - n
X =X TR, T OFDX

Fig. 1. Shift register of degree n with linear feedback

SHIFT REGISTER 0
(0)
+ Xk
(MOD 2)
(0) (0) (0)
At ka-z X3
SHIFT REGISTER 1
M
+ Xk
(MOD 2)
.o Jm) m
Xt R e P
SHIFT REGISTER 2
(2)
+ XL(
(MOD 2)
@ | L2 (2
X R K Pees

Fig. 2. A simple linear interconnection of three shift registers

JPL TECHNICAL REPORT 32-1526, VOL. Xi

d
i-2 (i-2)
D Xk
%
SHIFT REGISTER i - 1 STAGES D @
! U 1+D "k
O]
X . R -1 T
+ 1k @ | 52,00 LERNO!
DX DX LI] D XY =t FLIP-
{(moD 2) k k k FLOP
9.
oG
1+D k
Fig. 3. General register of final configuration
SHIFT SHIET SHIFT
REGISTER O REGISTER | REGISTER N-1
compruter] 03 @] DT (D DY (N-1)
worp 1 | i*D % |T+D Xk * N * %
WORD 2 pd-! xio) pd”! X‘((‘) . . . p?"! xtN"l
L] *
[] [
L []
worp ¢-1 | 07 X N . . o? x{™1
WORD q o x? . . . o x{N-V

Fig. 4. Computer realization of shift registers

101

Appendix
XDS Sigma 5 FORTRAN Subroutine

The XDS Sigma 5 FORTRAN subroutine for the poly-
nomial of degree 288 is listed in Fig. A-1. The program
utilizes the machine dependent in-line code features of
XDS Extended FORTRAN 1V and is therefore not com-
patible with other machines. Usage is as follows:

1

(2)

3)

102

CALL PN288(N):

CALL PNI1(M):

CALL PIX(N):

Nine pseudorandom integers
are returned in array N. Their
distribution is uniform from
— 281 to 2% —1.

One new number is returned
in M.

The state of the nine words of
memory determining the next

output are returned in array
N. These are not the same as
returned by a CALL to PN-
288.

(4) CALL PAX(N): Packs the nine words of mem-
ory from array N.

(5) CALL PIXJ(M): Returns the value of a pointer
used by PN1.

(6) CALL PAXJ(N): Sets the pointer.
A general random number package utilizing this basic

algorithm has been written by R. Winkelstein and will
be reported on in a future article.

JPL TECHNICAL REPORT 32-1526, VOL. XI

+F WM+
e o0 2o o

@) W G WY)P
F WA OWXN

e Se 29 06 49 A8 os we

G (L
NN
e os e

W
o0
P

391
401
411
421
431
b4t
451
463
474
481
491
501

NN wn

NN
= Ny

DHOHDDDHDBDNDOIDIDGHNLG

a¢

3C

4C

SUBRRBUTINE PNBRE&(NAUTY
DIMENSTIEN N(18)aNBLTI011)
DATA JaNW/19:9/
DATA (N(1)a1=1,%) /2036821439, 1235R7452121986321452,1478598765,
1=888521432,9635898521, 21238741258, +210C0352140m»1865423518/
BALs2 2%

Lsg3 N+9

LC1I]

STM, 3 *NBUT
w18
RETURN

L1,3 «9g

Luwak N+11,3 D7 INTE R4

LWab sX194A5294 4!

(PR N#12,3 Cé INT® R4 BN MASK

SCSs4 L3}

EB8R, 4 N ANS TN R4, NBT PRBPERLY SKIFTED
SCSs 4 B ANS N R4, FRAPERLY SHIFTEC
STWat N+{8,;3 ANS IN MwARRAY, LBWER PART
Lwae5 N

L8RS N+10,3

STW25 N NEW N9 INTB N

BIRs3 i8

LC1 8

LMak N#+40

STMs & N+t

R »2

ENTRY BN1(Nt)
IF(JeLE2481GBTR 20
Jel0

BAL,2 28
NisN(J)
NEINL S

RETURN
ENTRY RAX(NEBLT)
DB 30 1aNWalaet
N(I)=NAUT(Im1)
wels
RETURN
ENTRY BIX(NAUT)
DB 40 l=z=NWatlsw1
NBUT(I1-1)=N(1)
RETURN
ENTRY pAXJ{JBUT)
WEMAXC(JBUTANW+1Y
RETURN
ENTRY pIXxJ(JalT)
WwBLT=)
RETURN
END

Fig. A-1. XDS Sigma 5 FORTRAN subroutine for the polynomial of degree 288

JPL TECHNICAL REPORT 32-1526, VOL. Xl

103

